
394 | Nature | Vol 638 | 13 February 2025

Article

Topological water-wave structures 
manipulating particles

Bo Wang1,2,3,11, Zhiyuan Che1,4,11, Cheng Cheng1,4, Caili Tong2, Lei Shi1,4 ✉, Yijie Shen5,6,7 ✉, 
Konstantin Y. Bliokh8,9,10 ✉ & Jian Zi1,4 ✉

Topological wave structures, such as vortices1–6, polarization textures7–11 and 
skyrmions12–19, appear in various quantum and classical wave fields, including optics 
and acoustics. In particular, optical vortices have found numerous applications20,21, 
ranging from quantum information to astrophysics. Furthermore, both optical and 
acoustic structured waves are crucial in the manipulation of small particles22–25, from 
atoms to macroscopic biological objects. Recently, there has been a surge of interest 
in structured water surface waves, which can be notable analogues of quantum, optical 
and acoustic wave systems26–29. However, topological water-wave forms, especially 
their ability to manipulate particles, have not yet been demonstrated. Here we 
describe the controllable generation of topological structures, namely wave vortices, 
skyrmions and polarization Möbius strips, in gravity water waves. Most importantly, 
we demonstrate the efficient manipulation of subwavelength and wavelength-order 
floating particles with topologically structured water waves. This includes trapping 
the particles in the high-intensity field zones and controlling their orbital and 
spinning motion due to the orbital and spin angular momenta of the water waves.  
Our results reveal the water-wave counterpart of optical and acoustic manipulation, 
which paves the way for applications in hydrodynamics and microfluidics.

Linear plane waves, which are sinusoidal oscillations propagating in 
one direction, are characterized by a few key parameters: amplitude, 
phase, frequency, wavevector and polarization. These are equally 
relevant for acoustic, electromagnetic, quantum and hydrodynami-
cal waves. However, when several plane waves interfere, the resulting 
structured field becomes rather complicated, so that its amplitude, 
phase and polarization can vary arbitrarily from point to point30,31. For 
such complex wave fields, topological properties, robust with respect 
to small perturbations, become relevant.

Topological wave forms, such as phase singularities (wave vorti-
ces)1–6, polarization singularities and Möbius strips3,7–11, as well as 
skyrmions and merons11–19, play important roles in various areas of 
modern wave physics. In addition to the topological robustness, these 
structures exhibit notable dynamical properties. For example, wave 
vortices carry quantum-mechanical-like orbital angular momentum 
(OAM)4,6,20,21. That is why vortex and, generally, structured waves have 
enormously advanced the optical and acoustic manipulation of small 
particles22–25.

Surface water waves are the most accessible classical waves32. Sur-
prisingly, systematic studies of linear structured water waves with 
non-trivial topological and dynamical properties, which resemble 
optical and acoustic structured waves, began only recently26–29,33–36. 

Water-wave vortices with different topological charges, skyrmions 
and polarization Möbius strips have been described theoretically37,38.

In this work, we present the controllable generation of these topologi-
cal structures in gravity water waves. We deal with two basic configu-
rations. First, a suitable interference of three plane waves produces a 
lattice of (1) first-order vortices in the surface-elevation (vertical dis-
placement) field, (2) skyrmions in the instantaneous three-dimensional 
surface-displacement field and (3) C-points of pure-circular ‘polari-
zations’ (three-dimensional trajectories of water-surface particles) 
surrounded by the polarization Möbius strips. Second, several cir-
cularly distributed, interfering waves with an azimuthal phase incre-
ment produce Bessel-type wave vortices with controllable topological 
charges. Most importantly, we demonstrate the efficient manipulation 
of macroscopic floating particles using structured water waves. In com-
plete analogy with optical and acoustic forces and torques, we observe  
(1) the gradient force trapping particles in the high-wave-intensity areas, 
(2) the ‘radiation-pressure’ force pushing a particle along the local 
phase gradient (the wave momentum density) and (3) the torque on the 
particle produced by the effective spin density in the water-wave field.

Our results provide an efficient toolbox for manipulating floating 
objects with water waves and offer an accessible platform for studying 
the topological and dynamical properties of structured waves.
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Basic concepts
The main concepts applied in this work are shown in Fig. 1. We consider 
linear deep-water gravity water waves, but all the main results remain 
valid for gravity-capillary finite-depth water waves32,38. In the linear 
approximation, the water-surface particles, distributed over the 
two-dimensional z = 0 plane, oscillate in space and time, which can be 
characterized by the three-dimensional displacement of each particle 
with respect to its unperturbed position,  x y t( , , ). The z component 
of this displacement, Z x y t( , , ), describes the directly observable per-
turbed water surface.

Consider first a plane water wave with frequency ω and wavevector 
k xk=  (the overbar denotes the unit vector of the corresponding direc-
tion), related as ω gk=2 , where g is the gravitational acceleration 
(Fig. 1a). In such a wave, the water-surface particles move along circu-
lar trajectories traced by x y t( , , )  in the (z,x) plane32. These circular 
trajectories and the corresponding local angular momentum produced 
by circling particles can be considered as fluid-mechanical analogues 
of circular polarization and spin angular-momentum density in elec-
tromagnetic or acoustic waves28,38–41.

In a plane water wave, the circular polarization and the corre spond-
ing spin vectors are similar for all water-surface particles. How-
ever, when we interfere several plane water waves with the same  
frequency but different wavevectors, the behaviour of particles in 
different points of the (x,y) plane varies dramatically (Fig. 1b). The tra-
jectory of each particle is now a generic ellipse in three-dimensional 
space, with the corresponding spin normal to its plane. Such a struc-
tured wave field is conveniently described by the complex displacement 
field R(x,y): x y t x y( , , ) = Re[ ( , )e ]ωt−iR . The corresponding spin den-
sity is S R R∗ρω= ( /2)Im( × ), where ρ is the water density28,38. Below we 
study topological structures in gravity water waves using the vector 
surface-displacement field  or R, and its physically meaningful quad-
ratic forms, such as the spin density S.

Vortices, skyrmions and Möbius strips
Our experiments were performed in a square 60 × 60 cm2 wave  
tank with a depth h = 3 cm. We used wavelengths λ = 2π/k = 2–4 cm 
satisfying the deep-water approximation khtanh( ) 1≃ . In the first 
experiment, we interfered N = 3 plane water waves with equal ampli-
tudes and frequency ≃ω/2π 6.8  Hz (wavelength λ 4≃  cm, taking  
into account the surface-tension correction), but different direc-
tions φ φ= cos + sini i ik x y , φ i N= 2π( − 1)/i , i N= 1, …, , and phases ϕ φ=i i

  
(Fig. 2a and Methods). The phases ϕi are inessential for the three-wave 
interference but make a difference in similar set-ups with N > 3 waves. 
We measured the water-surface elevation x y t( , , )Z  using fast chequer-
board demodulation (FCD)42 (Methods).

Figure  2a shows the measured three-wave interference field 
Z x y t( , , = 0) inside the hexagonal cavity (see Supplementary Video 1 
for its temporal evolution). The corresponding complex field Z(x,y) 
was then obtained using the Hilbert transform (Fig. 2b). Notably, this 
field exhibits a hexagonal lattice of phase singularities (wave vorti-
ces)1–6,38 with alternating topological charges ℓ = ± 1. These are points 
where the wave amplitude vanishes, |Z| = 0, whereas the phase Arg(Z) 
increases by ℓ2π  when encircling the point in the anticlockwise direc-
tion in the (x,y) plane. Such wave vortices are the simplest topological 
entities in a scalar structured wave field. These purely classical objects 
somewhat resemble vortices in quantum fluids, for which the quantized 
circulation is associated with the phase increment of the wavefunction.

Our further consideration requires the full-vector wave field  
 x y t( , , ). Although making direct measurements is challenging,  
the horizontal in-plane components can be reconstructed from the 
measured vertical component Z  using the gravity-wave equations: 
X Y k Z∇∇( , ) = −1

2 , where ∇∇ = (∂ , ∂ )x y2  is the in-plane gradient. This method 
is like reconstructing the three-dimensional surface-plasmon– 
polariton field from gradients of the measured vertical electric-field 
component12,13,15 or acoustic three-dimensional velocity field from 
gradients of the measured scalar pressure field11,41.

Figure 2c shows the colour- and brightness-coded distribution of 
the instantaneous three-dimensional displacement field  x y t( , , = 0) 
reconstructed from the three-wave interference measurements. Nota-
bly, it exhibits a hexagonal lattice of skyrmions: areas where the direc-
tions of unit vectors ̄ can be mapped onto the unit sphere, with 
opposite directions, ̄ = z̄  in the centre and z̄ = − ¯ in the vertexes.  
The topological number of this mapping (not related to the topologi-
cal vortex number ℓ) is   ∬Q x y= ¯ ⋅ (∂ ¯ × ∂ ¯ ) d d = 1x y

1
4π  at t = 0, and 

its sign flips after a half-period of wave oscillations. Akin to vortices, 
skyrmions are topologically stable structures; however, unlike point- 
like phase singularities in a scalar field, skyrmions are continuously 
distributed vector-field textures. In our experiment, the hexagonal 
skyrmion boundary was noticeably perturbed (we determined it to be 
a local minimum curve for x y( , , 0)Z ), but the calculated topological 
number ≃Q 1 with an accuracy of 10−2. Thus, we generated water-wave 
skyrmions, which resemble the recently observed optical12,14,16,19 and 
acoustic11,17,18 skyrmions, typically using N = 6 interfering waves.

Next, we analysed the local elliptical polarizations (trajectories) 
traced by the experimentally retrieved displacement field  x y t( , , ) 
and the corresponding spin density S(x,y). The distribution of the  
normalized spin vectors x y( , )S  is shown in Fig. 2d. For an ideal three- 
wave interference pattern, they form a lattice with triangular meron 
(half-skyrmion) cells15,19,38. Each triangular cell is centred around the 
phase singularity of Z(x,y), where the spin is directed vertically,  
S z= ℓ , whereas the boundaries correspond to S = 0z . Such merons are 
mapped onto the upper or lower hemisphere of spin directions with 
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Fig. 1 | Linear water waves and their main local characteristics.  
a,b, Wavevectors k (green), the wave-perturbed water surface Zz x y t= ( , , = 0) 
(grey), the local three-dimensional displacement of the water-surface  
particles  x y( , , 0) (blue), the local elliptical trajectories (polarizations) of  
the water-surface particles traced by x y t( , , )  (rainbow colours indicate the 

periodic evolution in t) and the corresponding time-averaged spin 
angular-momentum density S(x,y) (red). a, A single plane wave propagating 
along the x axis. b, Interference of several plane waves with the same 
frequencies and amplitudes but with wavevectors in different directions.



396 | Nature | Vol 638 | 13 February 2025

Article

the corresponding topological numbers Q = /2S ℓ  (Methods). However, 
these spin merons are not topologically stable, because the vertexes 
of the triangles correspond to higher-order singular points with S = 0. 
In a real perturbed system, such as our experiment, these singular 
points split, the perturbed S = 0z  lines do not form closed boundaries 
and the spin merons fail (Fig. 2d and Methods).

Nonetheless, elliptical polarizations x y t( , , )  exhibit another kind 
of topologically stable structures. Namely, centres of the broken 
spin-meron triangles contain polarization singularities: C-points with 
purely circular polarization3,7,10. Orientations of the major semiaxes of 
three-dimensional polarization ellipses around C-points form polari-
zation Möbius strips. The semiaxis direction flips when continuously 
encircling the polarization singularity8,10. These topological structures 
have previously been observed in optical9 and acoustic11 fields and 
were recently predicted37 for water waves. Figure 2d shows the polari-
zation Möbius strips around two C-points (approximately correspond-
ing to phase singularities of Z(x,y)) retrieved from our experimental 
measurements of the three-wave interference field.

Note that earlier works28,34,35 described a square lattice of alternating 
first-order water-wave vortices in the interference patterns of two 
orthogonal π/2-phase-shifted standing waves, which is equivalent to 
N = 4 waves with ϕ φ=i i

. However, such a configuration produces neither 
displacement skyrmions nor polarization Möbius strips (Methods).

 
Bessel vortices with different topological charges
In the second experiment, we generated water-wave vortices with 
different topological charges. We interfered N = 24 water waves with 
the same amplitudes, frequency ≃ω/2π 9 Hz (wavelength λ 2.7≃  cm), 
circularly distributed directions φ i N= 2π( − 1)/i , i N= 1, …, , and phases 

ℓϕ φ=i i  corresponding to the topological charge ∈ Zℓ  (Fig. 3 and 
Methods). In the ≫N 1 limit, this interference produces circularly 
symmetric Bessel-type water-wave vortices38,43,44, like electromagnetic 
surface plasmon–polariton vortices45,46.

We measured the vertical displacement field Z x y t( , , ) with FCD.  
Figure 3a shows the measured field for ℓ = 2 at t = 0. The corresponding 
complex fields Z(x,y) for ℓ = 0, 1, 2, 8 are shown in Fig. 3b,c (see also 
Supplementary Videos 2–5 for the temporal evolution of x y t( , , )Z ). 
These fields correspond to the Bessel-type vortices Z J kr φ∝ ( )exp(i )ℓℓ  
( Jℓ  is the Bessel function) with 2πℓ  phase increment around the  
centre38,43. (Notably, the three-dimensional displacement field  

x y t( , , = 0)  of the ℓ = 0 non-vortex mode forms a skyrmion in the  
centre; Methods). For ℓ ≠ 0, these are quasi-standing waves that do not 
propagate in the radial direction but do propagate in the azimuthal 
direction. The wave amplitude is maximum near the first Bessel- 
maximum ring of radius ℓ≃r λ /2max . Thus, we demonstrated the  
controllable generation of higher-order water-wave vortices.
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Fig. 2 | Topological structures in the interference patterns of three water 
waves. a, Experimental set-up for generating three plane waves with the same 
amplitude and frequency but different azimuthal angles of propagation 
φ = (0, 2π/3, 4π/3) and the corresponding phases delays ϕ φ= . The measured 
vertical displacement field Z x y t( , , = 0) is shown on the right. b, Distributions of 
the amplitude (brightness) and phase (colour) of the corresponding complex 
field Z(x,y) in the rectangular area indicated by the yellow square in a. Examples 
of phase singularities (wave vortices) with topological charges = ± 1ℓ  are shown 
by dots and circular arrows indicating the ℓ2π  phase increments around these. 
c, Distribution of the reconstructed three-dimensional displacement field 
 x y t( , , = 0) (encoded by the brightness and colours) exhibits skyrmions.  
The field directions in the near-hexagonal cell are mapped onto the unit  
sphere with the topological number Q = 1. The measured skyrmion boundary  

is noticeably perturbed compared to the ideal hexagon shown in b, but the 
topological charge Q calculated from the discrete experimental data is very close 
to the theoretical integer value. d, Corresponding distribution of the spin 
density S(x,y) exhibits a lattice of near-triangular ‘failed’ merons (half-skyrmions). 
The meron boundaries determined by S x y( , ) = 0z  (red curves) are not closed, 
unlike the ideal triangles in b. Nonetheless, these quasi-merons contain stable 
topological structures in the distributions of elliptical polarizations (trajectories) 
traced by the displacement field  x y t( , , ). These are C-points of purely circular 
polarizations surrounded by polarization Möbius strips. The orientations of 
the major semiaxes of the polarization ellipses (blue and magenta vectors) 
flip (highlighted in yellow) as they continuously encircle the C-point. Max., 
maximum; min., minimum.
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Such wave vortices have notable dynamical properties carrying both 
spin and OAM, so that the z component of the total angular momentum 
(spin plus orbital) is quantized according to the topological number 
ℓ (ref. 38). To quantify these angular-momentum properties, we recon-
structed the complex three-dimensional displacement field R(x,y),  
as in the three-wave experiment. Then we calculated the correspond-
ing spin density S(x,y) and the canonical wave momentum density 

x y ρω ∇∇( , ) = ( /2)Im[ ⋅ ( ) ]2
∗P R R . This momentum density is directly related 

by the velocity US of the Stokes drift of water-surface particles, ρ= SP U , 
which appears as a time-averaged nonlinear (quadratic) correction to 
their linear oscillatory motion28,32,35,47,48. The z component of the OAM 
density is described by the azimuthal component of the momentum 
density38: r PL rP= ( × ) =z z φ.

Figure 3d displays the distributions of the vertical spin density Sz 
and the wave momentum density P calculated from the experimen-
tally measured Bessel vortices with ℓ = 1, 2, 8. One can see strong  
azimuthal momentum Pφ around the first Bessel-maximum ring, as 
well as rings of positive and negative spin Sz  around it. (Similar 
momentum density distributions and the Stokes drift of fluid particles 
have been measured in acoustic Bessel beams49). Flipping the vortex 

sign ℓsgn( ) results in the sign flipping for both the azimuthal momen-
tum Pφ and spin Sz, which can be associated with spin–momentum 
locking in water waves. For the first-order vortices, ℓ = 1, the spin 
density Sz  reaches its maximum or minimum in the vortex centre 
r = 0, like the vertical-spin extrema near the first-order vortices and 
C-points in the three-wave interference (Fig. 2). In the next section 
we describe manifestations of these dynamical properties in  
the interactions between structured water waves and floating  
particles.

Trapping and manipulating floating particles
In these experiments, we used subwavelength, spherical, polyethylene 
particles with densities ρ =p

 0.89–0.96 g cm−3 and radii a = 2.4, 3.1, 4.75 
and 6.35 mm, as well as a ping-pong ball with a = 20 mm, floating on 
the water surface. Such floating particles undergo fast oscillatory 
motion with the wave frequency ω, along with the slow time-averaged 
action of the wave field, which is quadratic in the field amplitude. This 
action is like the optical and acoustic radiation forces and torques 
underpinning optical and acoustic manipulation22–25.
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Fig. 3 | Generating Bessel-type water-wave vortices with different 
topological charges. a, Experimental set-up with N = 24 sources uniformly 
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corresponding to the integer topological charge ℓ (here = 2ℓ  is shown).  
The measured vertical displacement field Z x y t( , , = 0) is shown on the right.  

b,c, Distributions of the amplitude (brightness) and phase (colour) of the 
reconstructed complex field Z(x,y) for ℓ = 0 (b) and = 1, 2, 8ℓ  (c). d, Distributions 
of the time-averaged vertical spin density S x y( , )z  (colour density plots) and 
in-plane wave momentum density P(x,y) (black vectors) for the Bessel vortices 
shown in c.
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Employing the analogy with optical and acoustic forces and tor-
ques40,50,51, we introduced a toy model for the water-wave-induced 
force and torque on a floating particle. This model is based on the 
wave momentum density P, spin density S and kinetic energy density 
(intensity) RW ρω= /42 2 . Assuming the lowest-order dipole-like cou-
pling between the water-wave field and the particle, which is quanti-
fied by the complex scalar polarizability α, the wave-induced force 
and torque on the particle can be written as (Methods):

α W ω α

T ω α S

∇∇= Re( ) + Im( ) ≡ + ,

= Im( ) .
(1)

z

22 grad press

spin

F P F F

Here we describe the action affecting the two-dimensional motion of 
the particle in the (x,y) plane: the horizontal in-plane force and the 
vertical z-directed torque. The first force term in equation (1) is the 
gradient force responsible for trapping particles in high-intensity (for 

αRe( ) > 0) or low-intensity ( αRe( ) < 0) zones, whereas the second term 
is the wave-pressure force directed along the local wave momentum.

In optics and acoustics, in the small-particle limit ≪ka 1, the polariz-
ability typically scales proportionally to the particle volume: α a∝ 3, 
and the imaginary part αIm( ) characterizes the absorption of waves  
by a particle. Therefore, the wave-pressure force and spin-induced 
torque in equation (1) can be associated with the transfer of momentum 
and spin angular momentum from the wave to the particle40,50,51.

Figure 4a schematically shows the action of the gradient force, the 
wave-pressure force and the spin-induced torque (equation (1)) on a 
particle in a water-wave vortex. The gradient and wave-pressure forces 
are directed radially and azimuthally, according to the intensity and 

phase gradients, whereas the torque is induced by the local elliptical 
polarizations (trajectories) of water-surface particles in the x y( , ) plane.

Figure 4b–d (see also Supplementary Videos 6–9) displays the 
observed dynamics of floating particles of different sizes in the 
Bessel-vortex water waves with different topological charges ℓ (Fig. 3). 
First, a particle with a = 2.4 mm is attracted to the centre of the ℓ = 0 
Bessel wave and is trapped there (Fig. 4b and Supplementary Video 6). 
This is clear evidence of the radial gradient force corresponding to 

αRe( ) > 0. (This is somewhat counterintuitive because in acoustics, 
αRe( ) < 0 for ρ ρ<p

, where ρp is the particle density). Second, for the 
ℓ = 2 vortex, a particle with a = 3.1 mm is trapped in the first Bessel- 
maximum ring, and we observe its orbital motion due to the azimuthal 
wave-pressure force (Fig. 4c and Supplementary Video 7). This is a 
direct mechanical manifestation of the OAM Lz  carried by water- 
wave vortices and transferred to the particle. (The particle reaches a 
constant angular velocity when the azimuthal pressure force is balan-
ced by the friction, which is proportional to the velocity). Third, we 
observed similar radial trapping and orbital motion for a ping-pong 
ball (a = 20 mm) in a water-wave vortex with = 8ℓ  (Fig. 4d and Sup-
plementary Video 9). Notably, the ping-pong ball also experiences a 
spinning rotation, which is caused by the water-wave-induced torque T   
with respect to the ball centre. The angular velocities of the spinning 
and orbital rotations are ≃ ≃Ω Ω2 π/10spin orb  rad s−1 (much less than ω). 
This torque can have two origins: (1) the spin-induced torque Tspin of 
equation (1) (note the positive spin density S > 0z  at the inner part of 
the Bessel ring, where the ball is trapped; Fig. 3d) and (2) the ‘gradient 
torque’ Tgrad, which originates from the radial gradient of the azimuthal 
wave-pressure force and strongly pushes the outer side of the ball. 
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Fig. 4 | Dynamics of floating particles in the Bessel-vortex water waves.  
a, Schematic showing the radial gradient and azimuthal wave-pressure  
forces and the spin-induced torque, as described by equation (1). b, Trapping  
of the a = 2.4 mm particle in the central intensity maximum of the ℓ = 0 mode 
provided by the radial gradient force. c, Radial trapping of the a = 3.1 mm 
particle in the first Bessel maximum of the = 2ℓ  vortex, accompanied by its 
orbital motion due to the azimuthal wave-pressure force (compare with the 
wave-momentum distribution in Fig. 3d). d, Similar trapping and orbital 

motion of a ping-pong ball, a = 20 mm, in the = 8ℓ  vortex. The ball also 
experiences spinning rotation (green arrows and the three-star markers) 
induced by the torque due to the spin density Sz  and due to the radial gradient 
of the azimuthal wave-pressure force. In b–d, for better visibility, the actual 
video frames of floating particles with the chequerboard background are 
overlapped with the experimentally measured wave amplitude |Z(x,y)| 
(greyscale), whereas the particle position and orientation are highlighted by 
the magenta and black markers. Scale bars, 2 cm.
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Both of these torques act in the same direction and contribute to the 
spinning rotation (Methods).

The observed dynamics is entirely like that of the radial trapping 
and orbital and spinning motion of small particles in optical vortex 
fields52,53. The only difference is that, in optics, the spinning motion 
can be controlled by the global circular polarization of the wave, inde-
pendently of the vortex charge ℓ, whereas in water waves, the signs of 
the orbital and spinning rotations are locked with each other. Note 
that the radial gradient force is not always sufficient for stable trapping: 
particles of certain sizes can escape the vortex ring when the centrifu-
gal force prevails (Supplementary Video 8). This effect can be employed 
to measure the trapping force.

We finally show that such water-wave manipulations of floating par-
ticles are robust and do not require circularly symmetric Bessel vorti-
ces. We placed particles of radius a = 6.35 mm near the centres of the 
ℓ = ± 1 vortices in the three-wave interference lattice (Fig. 2). Figure 5 
(see also Supplementary Videos 10 and 11) shows that the particles are 
trapped around such vortices within the quasi-spin-meron triangular 
zones. Furthermore, the particles undergo both orbital and spinning 
rotations with the directions controlled by sgn( )ℓ  and angular veloci-
ties Ω Ω2 π/10orb spin≃ ≃  rad s−1. The spinning motion can be induced 
by the two kinds of torques mentioned above, particularly by the 
maximum/minimum spin density Sz  in the centres (C points) of the 
quasi-spin-meron zones (Fig. 3d and Methods).

Conclusions
We have demonstrated the controllable generation of topological 
water-wave structures, including vortices with different topological 
charges, skyrmions and polarization Möbius strips. Our experiments 
evidence the robustness of these structures, in contrast, for example, 
to spin merons ‘broken’ in a perturbed three-wave interference pattern. 
Most importantly, we have revealed the notable dynamical properties 
of these structured water waves and demonstrated their capability to 
manipulate floating particles of different sizes, including stable trap-
ping and orbital and spinning rotations.

Our results provide a new platform for wave-induced mechanics, 
which can extrapolate the well-developed optical and acoustic manipu-
lations to fluid mechanics. In particular, capillary water waves can be 
employed for the microfluidic manipulation of biomedical objects, like 
the presently used acoustic waves24,25,54. Although optical manipulation 
uses wavelengths of the order of micrometres and acoustic manipula-
tion the wavelength range from the tens of micrometres to millimetres, 

water waves can efficiently use the next range from millimetres to cen-
timetres and even beyond to colossal ocean waves.

This work is only the first step in this direction. Further develop-
ment may include a detailed consideration of the interaction between 
structured water waves and floating particles, the sorting of particles 
with different properties using water waves, the interplay between 
topology and nonlinearity inherent in water waves, a consideration 
of multi-frequency and spatio-temporal structured water waves and 
so forth.
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Methods

Experimental set-up and FCD
In the three-wave interference experiment, we used the set-up  
shown in Fig. 2a. The interference field was produced within a three- 
dimensional-printed hexagonal structure with 16-cm-wide sides, where 
three sides (1, 3 and 5) acted as independent plane-wave sources, 
whereas the opposite sides (2, 4 and 6) were open boundaries (raised 
above the water surface). The whole structure was surrounded  
by sponge absorbers to prevent wave reflections. The source sides  
were connected with tubing to speakers controlled by a multichannel 
sound card (Quantum 4848, Presonus), which was externally inter-
faced with a computer. We used a sinusoidal signal with a frequency of  
ω/2π 6.8≃  Hz corresponding to the gravity wavelength λ 4≃  cm. In the  
dispersion relation, we had to take into account the surface-tension cor-
rection, ω gk σ ρ k= + ( / )2 3, where σ is the surface-tension coefficient32.

In the Bessel-vortex experiment, we used a three-dimensional-printed 
24-gon structure, which approximated a circle of radius 18 cm (Fig. 3a). 
The 24 sides were connected by tubing to speakers controlled by  
a multichannel sound card, which provided coherent sources with 
computer-controlled amplitudes and phases. We used a sinusoidal 
signal with a frequency of ω/2π 9≃  Hz corresponding to the wave length 

≃λ 2.7  cm. As the wave amplitude decayed considerably over the  
diameter of the structure, we neglected reflections from opposite sides 
and the resonant condition for the wave double-passing the cavity.

In both of the above set-ups, we measured the water-surface ele-
vation (vertical displacement) field Z x y t( , , ) using FCD42. Namely, a 
chequerboard pattern (with black and white 0.5 × 0.5-cm2 squares) was 
placed at the bottom of the transparent wave tank. A high-resolution 
video camera (Andor Zyla 5.5, 2,160 × 2,560 pixels, 100 fps), paired 
with a Canon 24–70 mm F2.8 L lens, was placed about 1.2 m above the 
wave tank to record the distortions to the chequerboard pattern caused 
by the wave. Compared to the undistorted reference pattern, a demod-
ulation algorithm allowed us to recover the water-surface profile 

x y t( , , )Z . Extended Data Fig. 1 shows examples of the field x y t( , , )Z  
reconstructed with FCD.

Topologically unstable spin merons in three-wave interference
An ideal interference pattern of three water waves with equal ampli-
tudes and frequencies, propagating at angles φ i N= 2π( − 1)/i , i = 1, 2, 3, 
exhibits a triangular lattice of alternating merons in the spin density 
distribution S(x,y) (ref. 38). These are zones where the spin directions 
S cover the upper or lower hemispheres with the corresponding half-
integer topological numbers Q x y= ∬ ⋅ (∂ × ∂ ) d d = ± 1/2x yS

1
4π S S S .  

These meron zones are separated by boundaries with S = 0z  (Extended 
Data Fig. 2a).

However, this spin-meron lattice is topologically unstable because 
the vertexes of the triangles are degenerate points, where all the  
spin components vanish: S = 0. Any generic, small perturbation splits 
these degenerate points into lower-order degeneracies. As a result, 
the boundaries S = 0z  do not form closed meron zones. This is exactly 
what we observed in our experiment (Fig. 2d and Extended Data Fig. 2b). 
When we closed a near-triangular, non-closed contour S = 0z  with miss-
ing fragments of the boundary, the spins inside these quasi-meron 
zones were mostly mapped onto the upper or lower hemispheres, but 
the corresponding topological numbers QS were not half-integer, as 
shown in Extended Data Fig. 2b.

By contrast, skyrmions formed by the three-dimensional displace-
ment field x y t( , , )  are topologically stable. Their hexagonal bound-
aries can be deformed by a small perturbation of the field but remain 
closed with an integer topological charge Q (Fig. 2c).

Comparison with four-wave interference
In earlier works28,34,35, the researchers generated a square lattice of 
alternating first-order water-wave vortices in the interference patterns 

of two orthogonal π/2-phase-shifted standing waves, which is equiva-
lent to N = 4 plane waves with ϕ φ=i i

. We also generated such interfer-
ence using a three-dimensional-printed square structure and frequency 

≃ω/2π 6.8 Hz (wavelength ≃λ 4 cm). Akin to the three-wave interfer-
ence experiments, we used FCD to measure the vertical displacement 
field x y t( , , )Z  and reconstruct the horizontal displacement-field  
components. Extended Data Fig. 3 shows that such four-wave interfer-
ence exhibits the first-order vortices (phase singularities) in the com-
plex field Z(x,y) but contains neither skyrmions in the three-dimensional 
displacement field  x y t( , , ) nor polarization Möbius strips around 
the centres of quasi-merons of the spin density S(x,y).

Skyrmion in the ℓ 0=  Bessel mode
Figure 3 shows the distributions of the normalized instantaneous dis-
placement vectors  x y t¯ ( , , = 0), as in Fig. 2c but for the generated  
Bessel modes. Notably, the non-vortex mode with = 0ℓ  exhibits a skyr-
mion with Q = 1 in its centre (Extended Data Fig. 4a), whereas the vortex 
modes with ≠ 0ℓ  do not contain ̄ skyrmions (Extended Data Fig. 4b).

Examples of unstable trapping of floating particles
In some cases, the trapping of floating particles in the high-intensity 
field zones can be unstable. Extended Data Fig. 5 and Supplementary 
Video 8 show the evolution of a particle with radius a = 4.75 mm in a 
Bessel-vortex water wave with = 2ℓ . After being trapped and undergo-
ing orbital rotation in the first Bessel-maximum ring for some time, 
the particle escapes the trap. This occurs when the radial centrifugal 
force F mΩ r=c orb

2  (m is the particle mass) is larger than the trapping 
gradient force Fgrad.

In addition, Supplementary Video 10 shows that a particle with radius 
a = 6.35 mm trapped near the = − 1ℓ  vortex in the three-wave interfer-
ence field also escapes the trap after some time. This does not happen 
for a similar particle near the = 1ℓ  vortex (Supplementary Video 11). 
This can be caused by different initial conditions, which result in dif-
ferent velocities and orbits of particles in two similar traps (Fig. 5).

Water-wave-induced forces and torques on floating particles
Here we introduce a theoretical model based on the analogy between 
the main dynamical properties of monochromatic (single-frequency) 
optical, acoustic and water-wave fields28,55. These fields all have similar 
forms for the local energy, canonical momentum and spin density. 
Moreover, the main forces and torques on small isotropic particles 
have similar forms in optics and acoustics51. Therefore, it is natural to 
expect that there will be similar forces and torques for small floating 
particles interacting with a single-frequency water-wave field.

This approach is based on the minimum coupling between the 
lowest-order multipole moments induced at the particle by the incident 
wave field. In acoustics, these are the monopole and dipole moments 
associated, respectively, with uniform compression or expansion and 
with a linear displacement of the particle. These monopole and dipole 
moments naturally interact with the scalar-pressure and vector-velocity 
(or displacement) acoustic fields. For water waves, assuming an incom-
pressible fluid and particle, it seems that only the dipole moment cou-
pled to the vector displacement field should be relevant. However, in 
contrast to the bulk acoustic waves, surface water waves are highly 
anisotropic, so that their vertical (z) and horizontal (x,y) properties 
can differ dramatically. In fact, the water-wave equations are like the 
two-dimensional acoustic equations if we treat the vertical displace-
ment Z as a scalar field (analogous to the acoustic pressure) and the 
horizontal displacement R 2 X Y= ( , ) as a two-dimensional vector field 
(analogous to the acoustic velocity)28,56. Moreover, note that vertical 
oscillations of a floating particle generate a monopole-like circularly 
symmetric water-wave field, whereas horizontal oscillations of the 
particle produce a dipole-like water-wave field propagating in the direc-
tion of oscillations but not in the orthogonal directions (Extended  
Data Fig. 6).



Article
Thus, it is natural to characterize a floating particle by the monopole 

and dipole moments induced by the vertical and horizontal displace-
ment wave fields:

M α Z α= , = . (2)M DD R2 2

Here αM and αD are the complex monopole and dipole polarizabilities 
of the particle. To find these parameters, one has to solve an exact 
water-wave scattering problem, like the Mie problem in optics57 and 
acoustics58. This is beyond the scope of this work, and we will use the 
polarizabilities as unknown proportionality parameters with dimen-
sions of volume.

Assuming the minimal-coupling energy of the wave–particle inter-
action in the form

D R2 2
∗ ∗W

ρω
M Z= −

2
Re( + ⋅ ), (3)int

2

we obtain the wave-induced force on the particle50,51,59:

α W α W ω α ω α∇∇ ∇∇= Re( ) + Re( ) + Im( ) + Im( ) . (4)z x y z x y
M

( )
D

( , )
M

( )
D

( , )F P P2 2

Here we introduced the parts of the kinetic energy density and  
of the wave momentum density related to the vertical and hori-
zon tal displacement fields: W ρω Z= ( /4)z( ) 2 2 , W ρω= ( /4)x y( , ) 2 2R 2 , 
P 2ρω Z Z∇∇= ( /2)Im[ * ]z( )  and ∗P R R2 2 2ρω ∇∇= ( /2)Im[ ⋅ ( ) ]x y( , ) . In this work, 
we need only the simplest toy model that can explain the main features 
of the particle behaviour in structured water-wave fields. Therefore, 
we set α α α= ≡M D , and in this case, equation (4) is reduced to the force 
in equation (1). It perfectly explains the particle dynamics observed in 
our experiments.

In turn, the vertical torque on a small particle involves only the dipole 
moment and can be derived as

∗D R2 2T
ρω

= −
2

Re( × ). (5)spin

2

For α α=D , this yields the second equation in equation (1).
This model assumes small subwavelength particles with ≪ka 1 and 

point-like induced monopoles and dipoles. For larger, finite-sized par-
ticles, another type of torque can appear because of the difference in 
the local wave-induced forces on opposite sides of the particle (see the 
next section).

Estimating torque, spin and orbital rotations of particles in 
experiments
We first consider rotations of a ping-pong ball in the Bessel-vortex field 
with = 8ℓ  (Fig. 4d and Supplementary Video 9). This ball has diameter 
2a = 4 cm. The intensity-maximum ring containing most of the azi-
muthal momentum of the vortex has radius r 4max ≃  cm and thickness 

rΔ 2max ≃  cm. The ball is trapped such that it occupies the radial range 
r ∈ (1, 5) cm. Therefore, the wave-pressure force acts mostly on its outer 
part, whereas the inner part is in the low-intensity and low-momentum 
zone. This produces a torque with respect to the centre of the ball, 
which is caused by the radial gradient of the azimuthal wave-pressure 
force and can be estimated as T F a ω α P a~ = Im( ) φgrad press .

The centre of the ping-pong ball is trapped around the maximum of 
the spin density Sz  (around ≃r 3 cm) (Fig. 3d). This can cause the 
spin-induced torque of equation (1): T ω α S= Im( ) zspin . To compare Tspin 
and Tgrad, note that the spin density is proportional to the wave intensity,  
and the azimuthal momentum density is proportional to the intensity 
multiplied by the phase gradient r/ℓ . Therefore, the ratio of the gradi-
ent and spin-induced torques can be estimated as

ℓT T a r/ ~ | | / . (6)grad spin

For small particles with ≪a r, the gradient torque is negligible. How-
ever, in the case under consideration, with a ~ r and = 8ℓ , the gradient 
torque dominates, so that the observed spinning of the ping-pong ball 
is apparently caused by this effect.

Let us now compare the spinning rotation due to the gradient torque 
with the orbital rotation caused by the azimuthal wave-pressure force. 
One can consider this orbital rotation in terms of the torque produced 
by the azimuthal wave-pressure force with respect to the vortex centre: 
T F rorb press≃ , where r  is the radius of the orbital trajectory of the ball. It 
is larger than the gradient torque Tgrad because r > a. However, to com-
pare the angular velocities of the spinning and orbital rotations, note 
that the moment of inertia of a particle with respect to its centre is 
I ma~0

2, whereas the moment of inertia with respect to the vortex cen-
tre is I mr~1

2. Therefore, comparing the angular accelerations, τ T I= / , 
produced by the gradient and orbital torques, we obtain:

τ τ r a/ ~ / . (7)grad orb

This means that in terms of angular velocities, the spinning effect can 
prevail over the orbital rotation, exactly as we observe in Fig. 4d and 
Supplementary Video 9, with ≃Ω Ω2spin orb. Note that the ratio of these 
angular velocities can also be affected by the difference between the 
friction induced by the spinning and linear (orbital) motions of the 
particle, because the stationary velocities are determined by the bal-
ance between the wave-induced forces and torques and friction effects.

Finally, we consider the spin and orbital effects in the dynamics of 
particles with radius a = 6.35 mm in the = ± 1ℓ  vortices (Fig. 5 and Sup-
plementary Videos 10 and 11). In this case, a ~ r and ℓ| | = 1, so that the 
gradient and spin-induced torques with respect to the particle centre 
are of the same order (equation (6)). Moreover, the particles are trapped 
within the triangular quasi-spin-meron zones with ℓS ∝ sgn( )z , includ-
ing the spin density extrema in the centres, so the effect of the spin 
should be noticeable.

Let us estimate the effect of the spin-induced torque compared with 
the orbital motion induced by the azimuthal wave-pressure force. As 
these two effects are associated with the transfer of the spin and orbital 
angular momenta from the water-wave field to the particle, we estimate 
the spin and OAM in the wave-field zone occupied by the particle. 
Assuming for simplicity that the field has the Bessel-type form38 with 
ℓ = 1, we calculate the r-dependent spin and OAM densities:

S
ρω

J kr J kr

L rP
ρω

J kr J kr

∝
4

[ ( ) − ( )],

= ∝
2

[ ( ) + ( )].
(8)

z

z φ

0
2

2
2

1
2

2
2

where J kr( )n  are the Bessel functions of the first kind. Calculating the 
ratio of the integral spin and OAM in the circular area with radius 2a 
(with the wavelength λ = 2π/k = 40 mm) around the vortex centre, we 
obtain:

≃
∫

∫

S
L

S r r r

L r r r

⟨ ⟩
⟨ ⟩

=
( ) d

( ) d
0.55. (9)z

z

a
z

a
z

0

2

0

2

This ratio agrees with the observed ratio of the spinning and orbital 
angular velocities in this experiment: Ω Ω2orb spin≃ .

Thus, our simple theoretical model and estimates demonstrate very 
good agreement with the experimentally observed dynamics for a 
wide range of particles and field parameters. Therefore, we conclude 
that our approach captures the essential features of the interaction of 
structured water waves with floating particles.
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Extended Data Fig. 1 | Reconstruction of the vertical displacement field  
(x,y,t) via the FCD technique. Here we show a hexagonal structure for  
the three-wave interference, Fig. 2, where only one source side produces an 
x-propagating near-plane wave (upper row), and the 24-gonal structure for  

the Bessel-vortex generation, Fig. 3, where only one source generates a wave 
propagating towards the center of the structure (lower row). a, Reference 
images without waves. b, Distorted images in the presence of the wave at t = 0. 
c, Reconstructed field distributions x y t( , , = 0)Z .
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Extended Data Fig. 2 | Topologically unstable spin merons in three-wave 
interference. Shown are: distributions of the unit spin-density vectors x ySS( , ), 
represented by brightness (Sz ) and color ( S Stan ( / )y x

−1 ), the meron boundaries 
S = 0z  (red curves), and mappings of the unit spin vectors in the merons onto  
the unit sphere, with the corresponding topological numbers Q S. a, An ideal 
theoretically-predicted three-wave interference exhibiting a lattice of 

triangular alternating merons with Q = ± 1/2S . b, Perturbed three-wave 
interference field observed in our experiment (see Fig. 2). The curves S = 0z   
do not form closed meron areas. Closing the gaps with black lines and mapping 
the unit spin vectors onto the unit sphere results in ‘quasi-merons’ with 
non-half-integer numbers Q S.
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Extended Data Fig. 3 | Structures in the interference of four water waves.  
a, Same as in Fig. 2 but for the interference of four plane waves with the angles 
of propagation φ = (0, π/2, π, 3π/2) and the corresponding phases delays  
ϕ φ= . This field is equivalent (up to the global spatial shifts) to the interference 
of two orthogonal standing waves phase-shifted by π/228,34,35. b, The complex 
vertical-displacement field Z(x,y) exhibits a square lattice of ℓ = ± 1 vortices.  
c, The normalized 3D displacement field x y t¯ ( , , = 0)  does not contain 

skyrmions or merons (the black curves correspond to Z x y t( , , = 0) = 0). d, The 
distribution of the normalized spin density S(x,y) exhibits ‘quasi-merons’, similar 
to the three-wave case in Extended Data Fig. 2. The black curves correspond to 
S x y( , ) = 0z . In contrast to the three-wave case, the polarization ellipses around 
centers of these quasi-merons do not form polarization Möbius strips. This 
because the C-points in the centers are double-degenerate due to the higher 
symmetry of the four-wave configuration.



Extended Data Fig. 4 | Skyrmions in the Bessel modes. Distributions of  
the normalized instantaneous displacement vectors x y t¯ ( , , = 0)  (encoded by 
the brightness and colors) in the generated Bessel modes with = 0ℓ  and = 2ℓ .  
a, The = 0ℓ  non-vortex mode exhibits a skyrmion with Q = 1 in the center  

(the boundary is shown by the green solid curve). The topological charge 
integrated inside the dashed contour vanishes: Q = 0. b, Vortex Bessel modes 
with ≠ 0ℓ  (here ℓ = 2) do not contain ̄-skyrmions.
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Extended Data Fig. 5 | Unstable trapping of floating particles. Dynamics  
of a floating particle with radius a = 4.75 mm in the Bessel-vortex wave with 
ℓ = 2. Unlike Fig. 4c in the main text, here the particle is attracted to the 

intensity-maximum ring, orbits there for some time, and then escapes, because 
the radial centrifugal force prevails the trapping gradient force.



Extended Data Fig. 6 | Schematics of monopole-like and dipole-like water-wave excitations. a, Vertical oscillations of a small particle produce a monopole-like 
water-wave field. b, Horizontal oscillations of a small particle generate a dipole wavefield.
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